A Generalized Ohm's Law *

The usual microscopic (point) version of Ohm's law $\vec{j} = \mathbf{s}_0 \vec{E}$ applies to steady state DC currents and assumes the charge carriers have reached a steady terminal velocity. For transient situations, we will relax this assumption and examine the acceleration of the carriers. We apply Newton's law to a charge carrier subject to an electric field and a coulomb frictional force:

1.) $m\vec{v} = e\vec{E} - g\vec{v}$ (The usual Ohm's law follows from setting the LHS = 0 and taking \vec{v} to be a constant, terminal velocity.)

Multiply by the carrier charge e and sum over a unit volume:

2.)
$$\sum em \dot{\vec{v}} = \sum e^2 \vec{E} - \sum e \vec{g} \vec{v}$$

use: $\sum 1 = N$ = number of carriers per unit volume; and $\sum e\vec{v} = \vec{j}$
3.) $m \frac{\partial \vec{j}}{\partial t} = Ne^2 \vec{E} - g\vec{j}$

Under steady state DC conditions, when $\frac{\partial \vec{j}}{\partial t} = 0$, this must reduce to $\vec{j} = \mathbf{s}_0 \vec{E}$. Thus we can set: $\mathbf{s}_0 = \frac{Ne^2}{g}$, the DC conductivity, and write:

4.)
$$\frac{m}{g}\frac{\partial \vec{j}}{\partial t} + \vec{j} = \mathbf{S}_0 \vec{E}$$
 as a generalized "Ohm's Law".

If we define a time constant $t = \frac{m}{g}$ we have the version:

5.)
$$t \frac{\partial \vec{j}}{\partial t} + \vec{j} = \mathbf{S}_0 \vec{E}$$

The Time Behavior of Free Charge

We now wish to apply this to the time behavior of an unbalanced charge in the interior of a conductor. We seek a generalization of the usual relaxation equation $\frac{\partial \mathbf{r}}{\partial t} + \frac{\mathbf{s}_0}{\mathbf{e}} \mathbf{r} = 0$. We here assume medium properties (σ_0 , ε , γ) to be constant in time and space:

Taking the divergence of **5.**) and using $\nabla \cdot \vec{j} = -\frac{\partial r}{\partial t}$ and $\nabla \cdot \vec{E} = \frac{r}{e}$ yields

6.)
$$t \frac{\partial^2 \mathbf{r}}{\partial t^2} + \frac{\partial \mathbf{r}}{\partial t} + \frac{\mathbf{s}_0}{\mathbf{e}} \mathbf{r} = 0$$

(Note that for very small τ [a poor conductor] we could drop the first term and get the usual relaxation equation with a time constant ϵ/σ_0 .)

Defining the "plasma frequency" $\boldsymbol{W}_p^2 = \frac{\boldsymbol{S}_0}{\boldsymbol{e} \boldsymbol{t}} = \frac{N \boldsymbol{e}^2}{\boldsymbol{e} \boldsymbol{m}}$, we may write

7.)
$$\frac{\partial^2 \mathbf{r}}{\partial t^2} + \frac{1}{\mathbf{t}} \frac{\partial \mathbf{r}}{\partial t} + \mathbf{w}_p^2 \mathbf{r} = 0$$

This is a damped free oscillation at the "plasma frequency" ω_p with a damping time constant τ . Note that **7.**) is analogous to the equations describing free running damped harmonic oscillators and RLC circuits.

For copper: $\omega_p = 1.6 \text{ E16 sec}^{-1}$, and $\tau = 2.4 \text{ E-14 sec}$.

* This discussion relies heavily on R. Becker and F. Sauter, **Electromagnetic Fields and Interactions**, Vol 1, pg 237-239, Blaisdell, 1964.