
A Generalized Ohm’s Law *

The usual microscopic (point) version of Ohm’s law  Ej
rr

0σ=   applies to steady
state DC currents and assumes the charge carriers have reached a steady
terminal velocity.  For transient situations, we will relax this assumption and
examine the acceleration of the carriers.  We apply Newton’s law to a charge
carrier subject to an electric field and a coulomb frictional force:
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Multiply by the carrier charge e and sum over a unit volume:
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use:  ∑ = N1 = number of carriers per unit volume;  and  ∑ = jve
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    as a generalized “Ohm’s Law”.

If we define a time constant γ
τ
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=  we have the version:
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The Time Behavior of Free Charge

We now wish to apply this to the time behavior of an unbalanced charge in the
interior of a conductor.  We seek a generalization of the usual relaxation equation
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 .  We here assume medium properties (σ0 , ε , γ ) to be constant in

time and space:
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(Note that for very small τ [a poor conductor] we could drop the first term and get
the usual relaxation equation with a time constant ε/σ0.)

Defining the “plasma frequency”  
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This is a damped free oscillation at the “plasma frequency” ωp with a damping
time constant τ.  Note that 7.) is analogous to the equations describing free
running damped harmonic oscillators and RLC circuits.

For copper: ωp =1.6 E16 sec-1 , and τ = 2.4 E-14 sec.

* This discussion relies heavily on R. Becker and F. Sauter, Electromagnetic
Fields and Interactions, Vol 1, pg 237-239, Blaisdell, 1964.


